Mixed-valency signature in vibrational inelastic electron tunneling spectroscopy.
نویسندگان
چکیده
Density functional theory simulations of the vibrational inelastic electron tunneling spectroscopy (IETS) of O2 on Ag(110) permits us to solve its unexplained IETS data [Hahn, Phys. Rev. Lett. 85, 1914 (2000)]. When semilocal density functional theory is corrected by including static intra-atomic correlations, the IETS simulations are in excellent agreement with the experiment. The unforeseen consequence of our calculations is that when adsorbed along the [001] direction, molecular O2 on Ag(110) is a mixed-valent system. This analysis of IETS unambiguously reveals the paramagnetic nature of O2 on Ag(110).
منابع مشابه
Inelastic electron tunneling via molecular vibrations in single-molecule transistors.
In single-molecule transistors, we observe inelastic cotunneling features that correspond energetically to vibrational excitations of the molecule, as determined by Raman and infrared spectroscopy. This is a form of inelastic electron tunneling spectroscopy of single molecules, with the transistor geometry allowing in situ tuning of the electronic states via a gate electrode. The vibrational fe...
متن کاملSingle-molecule reaction and characterization by vibrational excitation.
Controlled chemical reaction of single trans-2-butene molecules on the Pd(110) surface was realized by dosing tunneling electrons from the tip of a scanning tunneling microscope at 4.7 K. The reaction product was identified as a 1,3-butadiene molecule by inelastic electron tunneling spectroscopy. Threshold voltage for the reaction is approximately 365 mV, which coincides with the vibrational ex...
متن کاملConductance and vibrational states of single-molecule junctions controlled by mechanical stretching and material variation.
The changes of molecular conformation, contact geometry, and metal-molecule bonding are revealed by inelastic-electron-tunneling spectroscopy measurements characterizing the molecular vibrational modes and the metal-phonon modes in alkanedithiol molecular junctions at low temperature. Combining inelastic-electron-tunneling spectroscopy with mechanical control and electrode material variation (A...
متن کاملPhonon and plasmon excitation in inelastic electron tunneling spectroscopy of graphite
The inelastic electron tunneling spectrum ~IETS! of highly oriented pyrolitic graphite has been measured with scanning tunneling spectroscopy ~STS! at 6 K. The observed spectral features are in very good agreement with the vibrational density of states of graphite calculated from first principles. We discuss the enhancement of certain phonon modes by phonon-assisted tunneling in STS based on th...
متن کاملVibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy.
Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 104 13 شماره
صفحات -
تاریخ انتشار 2010